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Properties of the solutions of the Emden-Fowler equation the nonlinear term of 

which contains the unknown function raised to a negative power, are determi- 
ne& Boundary value problems in which one of the conditions corresponds to the 

requirement that the solution be bounded when the argument is equal to zero 
or infinity (this requirement occurs in a number of problems in mechanics) are 

also considered. These boundary value problems may have any number, or 
even an enumerable set of solutions, the latter case characterized by the dep- 
endence of these solutions on a parameter of an unusual form. 

For n > 0 (n is the power in which the unknown function appears in the non- 

linear term) the Emden-Fowler equation has been studied exhaustively in [l. 21. 
The problems of electrohydrodynamics and nonlinear magnetoelasticity leading 

to the Emden-Fowler equation with ra = -2, were studied in [3 - 51. The pre- 
sent paper deals with yet another problem, namely that of equilibrium of heavy 

filaments through which a current flows. This problem leads to the case of 
n =; -1 and the nonlinear term may be positive or negative, depending on 

whether the filaments attract or repel each other. 

I, Reduction to an autonomous system and 
solutions. The Emden-Fowler equation has the form Cl] 

properties of its 

(1 .I) 
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We shall consider the values w > 0. When n is rational and its denominator is odd (in 
this case real solutions w < 0 exist). the substitution w, = - w reduces the case 
w < 0 to one of the cases given below. We shall also assume that p > 0. Introducing 

a new argument r and the unknown tj by means of the relations p = a& and w = 
= Dqe-s’ we arrive at the following equation 

rl”-((26-_+$ap)~‘+6(6-P+018)11~ (1.2) 

+ a2+o-ab7L-1Fj2qrL exp { [ 6 (1 - n) - p (2 + 6 - a)] r) = 0 (tl’ = WW 

Let us now assume that 

$+a-ab"-lpZ= 1, 6= 1, (2_tG-a)IJ=l-n 

(the case 2 + d - a = 0 will be considered separately). Then ‘1 will not appear in 
(1.2) explicitly (this can also be achieved by means of a different substitution [4, 61, 

and (1.2) can be replaced by 

q’=O, 6'=(~+1)6-c-q +TTJ~, y=fl, c=l-p+afi (9.3) 

From (1.3) the following relations to be utilised later are: 

(c - mvf) = bl, - f%Je* - c(q0 - 

O ho = 9 (O), 60 = ti (0)) (1.4) 
Let us investigate various combinations of the signs of C and y. 

1. Let c > 0 and y = 1. Then the system (1.3) has a singularity q = q. 6 = 0, 
,‘-* 

tic = C. Setting q - qc = 5 and linearizing (1.3) near the singularity we ontam 

5’ = 6, 6’ = (c + 1) 6 - c (1 - n) 5 (1.5) 

The coefficients of (1.5) determine the character of the singularity. 
Let us consider a subcase, when (c - I)” + 4nc < 0 and the singularity is an un- 

stable focus. Making use of the signs of the derivative 

&N&l =8-l [(c + 1) 6 - CTJ + yTf] (1.6) 

we shall mark the directions of the integral curves 6 (7) on the half-plane @$, 7 > 
> 0 (these are shown in Fig. la and their directions correspond to increasing ~5) We 

first assume that c > 1. When (c + 1) 
6 - Cl) f yrp = o on Z we have de 

= 6, while on B we have dzf I dn= 
‘2’1 + 11”-‘8-1 > 1 for 6 = n . Taking 

also into account the signs dztf’ I d.$ 
_.__- 

we find that the 06 -axis cannot be an 
asymptote to &(r\) (below we shall show 

that this is possible in other cases) and, 

(a) (b) that the line L leaves, after intersecting 

Fig. 1. B, into infinity while the line inter- 
secting L subsequently intersects 011. 
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When q >qc the space between B and m contains only those lines ti (7) which either 
go to infinity, or intersect I, and return. From this it follows that an integral curve going 
to infinity below B (a dividing curve) exists. This dividing curve is unique and B is its 

asymptote. 
Thus when n<--1 and 5 increases, all integral curves except the dividing curve and 

the singular curve 11 s VC rotare about the focus an infinite number of times, intersect 
B and go to infinity, while the dividing curve, having left the focus, approaches L’ 

from below asymptotically (Fig. la). When n > - I there are curves arriving from the 

focus to 06 and curves leaving 06 and going to infinity. 
The most interesting problem of the theory of the Emden-Fowler equation is that of 

the behavior of its solutions when p -+ 0 and p -+ 00. For the system (1.3) this corr- 
esponds to the behavior of its solutions when t +- f 00. The case 7 + - 00 is obv- 
ious. In the case of T --t 00 the integral curves go to infinity, the nonlinear term in 

(1.3) decreases and the behavior of the solutions is basically determined by the linear 

part of the equation. 
Let us take any curve which is neither the dividing curve, nor the singular curve 

rl = ‘)lc. Multiplying both sides of (1.4) by eec+ and passing to the limit we find that 
finite limits 

lim q (z) 6; = 
+-em (c - 1)--l [fro - ro + 1 f+tl” (E) g] > 0 

n 
lim 6 (t) e-cf = c lim q (z) e-Q 
7-00 54m (1.7) 

exist. Let us consider the dividing curve, utilizing the identity 

rl CT> = rloeT + J e+JS (E) - q (E)] dE 
0 

Since q(T) - 6 (Z) --f 0 as 7 --f CO, the integral 

0 

(1.8) 

converges and the following finite limits exist 

lim q (r) e-7 = q. - 1 e-k [q (E) - 6 (E)] dg > 0 
‘c4co 0 

lim 6 (z) e-* = lim 11 (Z) e-* (1.9) 
74x1 5-+00 

To investigate the boundary value problems (see below) we must know how the above 
limits are affected by the change of the initial point on the trajectory. Consider the 
limits of the functions f (-c)rll(X and f(‘r)q2(~), where VI(~) and Q(7) correspond to 

the same integral curve, but have different values when T = 0. Let ql (0) = ?llr, 
6, (0) = f4@, rl2 (0) = r120, and 6, (0) = tiZO. Then ~2 (t) h % (T + ‘%2), 
where ‘$2 is such that ~1 (~12) = Q o and 6, (Tag) e= 02,; z,, > 0, if the passage from 

(rl 107 61,) to (q2 ,, f12,,) takes place in the direction of increasing z and ‘Cl1 < 0 if 

the passage corresponds to decreasing z .We have 

lim f (t> q1 (r> = Him f (r + 712) / f WI [lim f W qa (%)I (1.10) 
7-M +-*a, T-+02 
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provided that these limits exist. Consequently, for all curves except the dividing curve 

we have 

On the dividing curve we have 

Ilm ql (7) e-+ = e-‘= lim qa (z) e-* (1.12) 
T-xa +*oo 

In the case 0 < c < 1, which is treated in the same manner, the dividing curve app- 

roaches asymptotically the straight line C defined by the equation 6 = q. On this 
curve we have the finite limit 

lim q (z) e-c+ = c-l lim G (z) e-c+ 

while on the remaining integral curves we have 

lim r-l (z) e-r = lim 6 (f) e-+ 

Finally, when c = 1 , we have the finite limit 

lim q (z) e-+ = 1 im 6 (Z) e-T 

on the dividing curve, and 

lim q (Z) e-Tz’l = lim 6 (z) e-YP1 

on the remaining curves [S]. 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

In the second subcase when (c - 1)” + kc > 0, the singularity is an unstable node 

(Fig. lb). On the half-line 

6 = z1 (q - qc), q > qc, Zl = l/2 (c + 1) + P/d (c - I)” + ncl”~ 

the inclination of the integral curves is given by 

df) 
-=c+1- 

CV 

4 z1 Pl - YJ + qn > 
21 ('1 - 71,) 

>c + 1 - 

(1.17) 

For this reason an integral curve appearing to the left of the straight line 6 = zi(q -Q) 
when il > 0 , cannot pass to the right of this line and consequently cannot intersect the 

Orl -axis. Therefore the integral curve can intersect the On -axis not more than twice 

(disregarding the fact that it emerges from a node). Curves which do not intersect the 
On-axis at all exist. Such, in particular, is the dividing curve. Indeed, min (c. i) < 

<zr, i.e. the line6 = z1 (11 - qc)intersects B when c < 1 and intersects C when 

c > 1 . It follows that if the dividing curve did intersect On, it would have to remain 
above the line 8 = zr (rl - Q) and could not have B or 4 as its asymptote. Thus when 
n < - 1 the integral curves have the form depicted on Fig. lb. 

The rate at which the value of the solution increases with Z + co is the same as in 
the case (c -- 1)2 +4nc < 0. 

Finally, the case (c - ‘!)2 + 4 nc =(I differs from the case (C -l)a +4 nc >0 
only in that all integral curves at the node are tangent to 6 = zi (q - qc). 

2. Let C < 0 and y = - 1. The singularity of the system (1.3) is rJ = qo 6 = 

= 0, $-l = - c. Linearizing (1.3) just as it was done in deriving (1.5) we again 
obtain (1.5). but since c < 0, the singularity is now a saddle-type singularity. 
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Letc> - 1. Having assigned the directions 
to the integral axes (indicated by arrows on 

Fig. 2a) we conclude that when n < - 1 , 

curves exist which approach, 06 asymptotica- 

lly. 
It is evident that if 77 - 0 and 6 - - Lo with 

increasing t, thenz < rIllaX ( # at infinity is 
reached in a finite time). Indeed, if 7 -I ,: 
as n -+ 0, then 

(4 
Fig. 2. 

0) 
T 50 

11 (z) = qo + J’ 6 (4) a lim?l(z)=lI, [fi(~)d~=-ni, (1.18) 
r--rm 0 ii 

which is impossible as the last integral in the expression diverges. Similarly, if rl - (1 
and 6 - 00 with decreasing ‘c, then % is bounded from below. 

As before, from (1.4) we find that lim q (T)e-’ and lim 6 (r) e-’ are finite on those 

segments of the curves on which q and 6 + 00 when z + 00, while lim r~ (r) emcr 
and lim 6 (‘c)P-‘~ are finite on those segments on which ‘rl --t 00 and 6 t - 00 
when z -+ - oo . Ifrj(z)-toowhenr-+&oo,thenwehave 

lim i.e’tT--E)tj” (t)@ = 0, lim i e7-Qln (E)dE = 0 (1.13) 
z4al~ T’--oD b 

Therefore on those segments we have 6-q --+ 0 and 6 - ct~ -+ 0 (Fig. 2a). 
If c < - 1, then L and the integral curves are transformed in accordance with 

Fig. 2b. The asymptotic behavior of the solutions is the same as in the case when 

Fig. 3. 

0 

- 1 < c < 0. When c :r - 1 then L degenerates 

into a straight line q = qC, while (1.3) and the initial 

Emden-Fowler system become integrable in quadratures. 
The behavior of the solutions remains unchanged. 

3. When c > 0 and y 2: - 1, the system (1.3) 
has no singularities, L does not intersect 07 and 

reaches its minimum value when ‘t’l z tlnL and 
n-1 Ilm =-c / n 

Obviously, integral curves which do not intersect L 

at all or intersect it twice, exist (Fig. 3); when n< .- 
- I the line 9 serves as a “double-sided” asymptote 
for these curves. We shall show that curves intersecting 

L only once exist. Let us obtain di),‘dll for 0 = Q (C -t 1) q. We find that d@ / dll i 

> I,:a (C -C 1) when 11 > 111 and 4~‘~-’ =- (C - I)“, i. e. an integral curve found in the region 
‘1 > 111, 9 > ‘:‘2 CC i- 1) 11, cannot leave it and must go to infinity. 

Let c > 1. From (1.4) we find 

fj ( (c - I)-1 ((IF,, - ‘lo) r 7 ) (“I~,~ - 6,,) C’I (I.201 

i. e. a curve intersecting 13 will also intersect /. Therefore the integral curves can go 

to infinity (II. 6 - -+ ‘- OCJ) only if they lie above /;.Amongst these curves we find a 

unique (dividing) curve approaching li asymptotically. 

On the dividing curve we have the finite limit iim q (T) Cwith a -+ 00 etc., 
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similarly to the case c > 0, y = 1. When c ( 1 the dividing curve approaches C etc. 
again similarly to the case c > 0, Y = 1. 

4. When c < 0 and y = 1, we arrive at the patterns shown on Fig. 4a ( c > - 1) 

or Fig. 4b ( C < - 1). In this case the limits 

lim rj (z) e-7 = lim 6 (2) e-7, 
5-43 T--roD 

lim q (z) fF* = + lim 6 (Z) eC* 
T-cQD 7- 

are always finite, and this also holds for the case C = - 1, when (I. 3) and the initial 
Emden-Fowler eouations are integrable in quadratures. 

5. When c = 0 we have Fig. 5a (y = 1) and 5b (y = - 1). The properties of the 

Fig. 4. Fig. 5. 

solutions approaching asym~otica~y 06 or B,match those of other similar eases. Let 
us consider the curves approaching a~mp~ti~ally @. When y = - 1 we have 

only one such curve. a dn in place of (1.4) we have 

(1.21) 

From (1.21) and the condition that 29 -+ 0 as ‘r -+ Rowe find that for large Z , 7 (‘c) 
increases as the integral of qn(~), i.e. rI .- t*, Y = (l-n)-‘. In the case shown on 

Fig. 5a, the behavior of ?I as T + - co 1s identical. 

6,When 2+a- u = 0 we must set in (1.2) 6 = O.Assuming in addition that 
U/Y) - fi = 1, we arrive at the system (1.3) of the same form as in the previous case 

(c -- 0), but with a different relation connecting q and We 

2. Boundary value problems bounded at zero rnd &t infinity. 
Knowing the behavior of sl (r) over the range - 00 < z < oo we can establish the 

properties of w (p)for U < p < bo and find out, in particular, how zu changes when 

[, -+ 0 and p -+ oo.This will enable us to estimate the number and certain properties 
of solutions of the boundary value problems with the following conditions holding: 
LC (10 =:= 1 and w (0) or w (ca) is bounded. 

The first problem is especially interesting for its applications [3 - 53. Certain problems 
containing initially a large number of parameters [ 4 and 5 ] can be reduced to the above 
problems containing a single new parameter #by a change of variables. 

Let fi ‘;-. U.Then t, --f If corresponds to r + 00, and p + oocorresponds to r -+ 
-+ - 00. Let us set in (1.2) 
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a = R, b zzz (P-2_Ra-o-2)1 I (n-1) 

Then the boundary conditions (R) = 'i yields q (0) = 6-t. Let us consider a problem 
in which w (0) is bounded. This is equivalent to the requirement that a finite value of 
lim q (@e* exists when “c + 00. 

The most interesting result is obtained when C > 1 and y = 1. In this case 9 {z)e” 
is bounded provided that a parametric equation of the dividing curve can be written in 
terms of q (z) and 6 (T) . The latter condition together with the condition 7fo zz (f-1 
defines the required solutions of the boundary value problem. For a given value of R 
the number of solutions corresponds to the number of times the dividing curve intersects 
the line “‘1 = q, = con&, = b-l (R). Let (c - 1)” + 4nc < 0. We denote by offs, 

%kS? *‘f the values of ‘1 at the points of intersection of the dividing curve with 07, 
their numbering corresponding to the motion along the curve in the direction of decreas- 

ing z. WI-ken qr C qal the boundary value problem has no solution, when ‘I, > q*s it 
has one solution, when %I< rl o < 7*3 it has two solutions, etc. Intervals of varia- 
tion of ‘10 (or R) exist on which k solutions exist (k denoting any positive number). 
When qu = ?jC the problem has an enumerable set of solutions. Since 

dw 
dp- - bp-l~-Q?@-l)’ (q I fi) > 0 

w increases from some value w, to unity when p increases from zero to &, and 

Wm = b lim qev*, z + 00. kt us investigate the behavior of to,,, (R).~hen R + 
+()&en b-l = q,+ 00 and(L9)gives 

Here q (X, IJa) containing the variable q, is expressed in terms of some q (z, Q*) 
containing a fixed initial value qo* by 

11 (7, rlo) = ‘1 CT + %a hiA l)O*) 

Proceeding as before from (1. P), we obtain the derivative 
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and integrating the terms containing de / (16 by parts. 
Consider a set of solutions such that the point (qa, 9,) lies on the segment of the 

dividing curve emerging from the point (rj*%, 0) and going to infinity, For these solu- 

tions we have ~~~~~~ ( 0, i. e, zu, decreases with increasing R for 0 (J$ <I&, 
When Ii,, ( R ( I&, solutions exist such that the point (r~*, 6,) lies on the curl of 

(a) ’ 

f 

(b) * 
Fig. 6. 

the dividing ourve connecting qel and rbr2. In these solutions u?~ increases with incre- 
asing R , etc. As the result we obtain the relation w, (R) in accord with Fig. 6a. 

Analogous relations for C > 1, y > 1 and (c - 1)s + 4 nc > 0 (Fig. 6b) and for 

c>f,y= - 1 (Fig. 6c) are obtained in a similar manner. In the latter case a 
solution of the boundary value problem exists and is unique for all R. 

When c < 1 a two-parameter family of functions %‘J (z) such that ~~~~~~)~-’ is 
finite as 7 +oo t exists in all cases. Therefore the boundary 

value problem in question has a one-parameter family of 
solutions and this indicates that the corres~nding physical 

problem is “underdefined”. 

Similarly, the boundary value problem with the condition 
that ” W is bounded when p-t 00” either has qo solutions, 
or has a family of solutions, When p < () , the statements 
referring to the problem with the condition of boundedness 

at zero can, after obvious changes, be applied to the problem 
with the condition of boundedness at infinity and vice versa. 

Let us give an example leading to a bounda~ value problem 
for the Emden-Fowler equation with IZ = -f Consider the 

planar forms of equi~ib~um of two vertical heavy filamenu+ 

Fig, 7. situated close to each other. with a current flowing through 

them (Fig. 7). Expressing the force per unit length of the 
filaments by the displacements I+ (z) and us (&we obtain, in accordance with [S], 

%I s -+ Setting now 

(Ao - 28,) f Aa = w, p = hz, h = POWS I =fWo’ (2.4) 

where Psg is the weight per unit length of the filament, we arrive at the following 
expression in w 

(2.5) 
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Substitution p = i/4 ra leads to the Emden-Fowler equation with a different value of CJ 

d 

dr - yrw-l = 0 

The boundary conditions now are: U) (0) bounded and w (hl) = 1 if (2.5) is used, and 
‘* (2 v/h3 = 1 in the case (2.6). Dependence of the solutions on the parameter corres- 

ponds to Fig. 6a (v = 1, attraction), or to Fig. 6c (i -1, repulsion). In the latter 
case u’nl = 10 (0) is the maximum value of w. These curves can be used in assessing the 

stability of the equilibrium [5]. In addition, in the repulsion case nonplanar forms of 

equilibrium and formal solutions describing forms with an apex analogous to those ob- 

tained in [S], are also possible. If the dividing curve corresponds to the “usual” forms, 
then the forms with an apex will have a corresponding combination of the dividing 

curve with a curve on which 6 -+ - rrg as 1 (Fig. 3). 
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The solution of the following problem of the elasticity theory is given for an 
infinite weightless homogeneous isotropic layer: a normal concentrated force 
acts at one of the boundaries of the layer, pressing it against a rigid smooth 
punch, represented by a convex body of revolution whose axis coincides with the 
support line of the concentrated force; one has to determine the largest possible 
value of the radius of the contact area between the punch and the layer for diff- 

erent punches and for different magnitudes of the concentrated force. 

1. We consider the layer in a cylindrical system of coordinates i 0; , with origin at 
the point of application of the concentrated normal force i,!. The : -axis is pointed 


